Motion In A Plane Ques 32

32. For angles of projection of a projectile $(45^{\circ}-\theta)$ and $(45^{\circ}+\theta)$, the horizontal ranges described by the projectile are in the ratio of

[2006]

(a) $1: 3$

(b) $1: 2$

(c) $2: 1$

(d) $1: 1$

Show Answer

Answer:

Correct Answer: 32.(d)

Solution:

  1. (d) Horizontal range for projection angle

$(45^{\circ}-\theta)$ is, $R_1=\frac{u^{2} \sin 2(45-\theta)}{g}$

Horizontal range projection

angle $(45^{\circ}+\theta)$ is, $R_2=\frac{u^{2} \sin 2(45+\theta)}{g}$

According to the condition,

$\Rightarrow \frac{R_1}{R_2}=\frac{u^{2} \sin 2(45-\theta)}{u^{2} \sin 2(45+\theta)}=\frac{\sin (90-2 \theta)}{\sin (90+2 \theta)}$

$\Rightarrow \frac{R_1}{R_2}=\frac{\cos 2 \theta}{\cos 2 \theta}=\frac{1}{1}$

So, $R_1: R_2: 1: 1$

The angle of elevation $(\phi)$ of the highest point of the projectile and the angle of projection $\theta$ are related to each other as $\tan \phi=\frac{1}{2} \tan \theta$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ