Motion In A Plane Ques 49

49. A particle moves along a circle of radius $(\frac{20}{\pi}) m$ with constant tangential acceleration. If the velocity of the particle is $80 $ $m / s$ at the end of the second revolution after motion has begun, the tangential acceleration is

[2003]

(a) $40\ \pi\ \text{m}/\text{s}^2$

(b) $40\ \text{m}/s^{2}$

(c) $640\ \pi\ \text{m}/\text{s}^2$

(d) $160\ \pi\ \text{m}/\text{s}^2$

Show Answer

Answer:

Correct Answer: 49.(b)

Solution:

  1. (b) Given, $r=\frac{20}{\pi} m$

$v_j=80$ $ m / sec \Rightarrow w_f=\frac{8 \pi}{2} \Rightarrow 4 \pi$

$\theta=2\pi$ radian $N=4$

From the equation,

$w_f^{2}=w_0^{2}+2 \alpha \theta \quad[\because w_0=0]$

$(4 \pi)^{2}=0+2 \alpha \cdot 4 \pi$

$\alpha=2\pi$

tangential acceleration

$ \begin{alignedat} & a_t=\alpha \cdot r \\ & a t=2 \pi \cdot \frac{20}{\pi}=40 \text{ m/s}^2 \end{aligned} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ