Motion In A Straight Line Ques 1

1. A particle moving along $x$-axis has acceleration $f$, at time $t$, given by $f=f_0\left(1-\frac{t}{T}\right)$, where $\mathrm{f}_0$ and $\mathrm{T}$ are constants. The particle at $t=0$ has zero velocity. In the time interval between $t=0$ and the instant when $f=0$, the particle’s velocity $\left(v_x\right)$ is

[2007]

(a) $\frac{1}{2} f_0 \mathrm{T}^2$

(b) $f_0 \mathrm{T}^2$

(c) $\frac{1}{2} f_0 \mathrm{T}$

(d) $f_0 \mathrm{T}$

Show Answer

Answer:

Correct Answer: 1.(c)

Solution: (c) Here, $f=f_0\left(1-\frac{t}{T}\right)$

or, $\frac{d v}{d t}=f_0\left(1-\frac{t}{T}\right)$

If $f=0$, then

$ 0=f_0\left(1-\frac{t}{T}\right) \Rightarrow t=T $

Hence, particle’s velocity in the time interval $t=0$ and $t=T$ is given by

$ v_x=\int_{v=0}^{v=V_2} d v=\int_{t=0}^T\left[f_0\left(1-\frac{t}{T}\right)\right] d t $

$ \begin{aligned} & =f_0\left[\left(t-\frac{t^2}{2 T}\right)\right]_0^T \ & =f_0\left(T-\frac{T^2}{2 T}\right)=f_0\left(T-\frac{T}{2}\right)=\frac{1}{2} f_0 T . \end{aligned} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ