Motion In A Straight Line Ques 22

22. A car accelerates from rest at a constant rate $\alpha$ for some time, after which it decelerates at a constant rate $\beta$ and comes to rest. If the total time elapsed is $t$, then the maximum velocity acquired by the car is

[1994]

(a) $(\frac{\alpha^{2}+\beta^{2}}{\alpha \beta}) t$

(b) $(\frac{\alpha^{2}-\beta^{2}}{\alpha \beta}) t$

(c) $\frac{(\alpha+\beta) t}{\alpha \beta}$

(d) $\frac{\alpha \beta t}{\alpha+\beta}$

Show Answer

Answer:

Correct Answer: 22.(d)

Solution:

  1. (d)

In Fig.

$AA_1=v _{\text{max. }}=\alpha t_1=\beta t_2$

But $t=t_1+t_2=\frac{v _{\max }}{\alpha}+\frac{v _{\text{max }}}{\beta}$

$= v _{\max } (\frac{1}{\alpha }+ \frac{1}{\beta})= v _{\max } (\frac{\alpha+ \beta}{\alpha\beta})$

or, $v _{\max }=t(\frac{\alpha \beta}{\alpha+\beta})$

If a body starting from rest accelerates at a constant rate $\alpha$ for certain time and then retards at constant $\beta$ and comes to rest after t. second from the starting point, then

Distance travelled by the body $=\frac{\alpha \beta t^{2}}{(2 \alpha+2 \beta)}$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ