Motion In A Straight Line Ques 24

24. A particle moves along a straight line such that its displacement at any time $t$ is given by $s=(t^{3}-6 t^{2}+3 t+4)$ metres

The velocity when the acceleration is zero is

(a) $3 ms^{-1}$

(b) $-12 ms^{-1}$

(c) $42 ms^{-2}$

(d) $-9 ms^{-1}$

[1994]

Show Answer

Answer:

Correct Answer: 24.(d)

Solution:

(d) Velocity, $v=\frac{d s}{d t}=3 t^{2}-12 t+3$

Acceleration, $a=\frac{d v}{d t}=6 t-12$; For $a=0$, we have, $0=6 t-12$ or $t=2 s$. Hence, at $t=2 s$ the velocity will be

$v=3 \times 2^{2}-12 \times 2+3=-9 ms^{-1}$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ