Motion In A Straight Line Ques 45

45. A body dropped from top of a tower fall through $40$ $ m$ during the last two seconds of its fall. The height of tower is $(g=10 m / s^{2})$

[1991]

(a) $60 $ $m$

(b) $45 $ $m$

(c) $80 $ $m$

(d) $50 $ $m$

Show Answer

Answer:

Correct Answer: 45.(b)

Solution:

  1. (b) Let the body fall through the height of tower in $n$th seconds. From,

$D_n=u+\frac{a}{2}(2 n-1)$ we have, total distance travelled in last $2$ seconds of fall is

$D=D_t+D _{(t-1)}$

$=[0+\frac{g}{2}(2 n-1)]+[0+\frac{g}{2}\{2(n-1)-1\}]$

$=\frac{g}{2}(2 n-1)+\frac{g}{2}(2 n-3)=\frac{g}{2}(4 n-4)$

$=\frac{10}{2} \times 4(n-1)$

or, $40=20(n-1)$ or $n=2+1=3$ $ s$

Distance travelled in $t$ seconds is

where, $t=3 $ $sec$

$s=u t+\frac{1}{2} a t^{2}=0+\frac{1}{2} \times 10 \times 3^{2}=45 $ $m$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ