Motion In A Straight Line Ques 9

9. A particle has initial velocity $(3 \hat{i}+4 \hat{j})$ and has acceleration $(0.4 \hat{i}+0.3 \hat{j})$. It’s speed after 10 $s$ is:

[2010]

(a) 7 units

(b) $7 \sqrt{2}$ units

(c) 8.5 units

(d) 10 units

Show Answer

Answer:

Correct Answer: 9.(b)

Solution:

  1. (b) Given, $\vec{u}=3 \hat{i}+4 \hat{j}$ and $\vec{a}=0.4 \hat{i}+0.3 \hat{j}$

$\Rightarrow u_x=3$ units, $u_y=4$ units

$\Rightarrow a_x=0.4$ units, $a_y=0.3$ units

Along $x$-axis,

$\therefore v_x=u_x+a_x \times 10=3+4=7$ units

Along $y$-axis,

and $v_y=4+0.3 \times 10=4+3=7$ units

Net final velocity $\therefore \quad v=\sqrt{v_x^{2}+v_y^{2}}=7 \sqrt{2}$ units

$ \vec{v} _i=3 \hat{i}+4 \hat{j}$ and $\vec{a}=0.4 \hat{i}+0.3 \hat{j}$

time, $t=10 sec$.

Final velocity $ \vec{v} _f$ after time $t=10 sec, \vec{v} _f= \vec{v} _i+\vec{a} t$

$ \vec{v} _f=(3 \hat{i}+4 \hat{j})+(0.4 \hat{i}+0.3 \hat{j})(10)=7 \hat{i}+7 \hat{j}$

The particle speeds up i.e., the speed of the particle increases when the angle between $\vec{a}$ and $\vec{v}$ lies between $0^{\circ}+90^{\circ}$. The particle speeds down i.e., the speed of the particle decreases when the angle between $\vec{a}$ and $\vec{v}$ lies between $+90^{\circ}$ and $180^{\circ}$.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ