Moving Charges And Magnetism Ques 30

30. A wire carrying current $I$ has the shape as shown in adjoining figure. Linear parts of the wire are very long and parallel to $X$-axis while semicircular portion of radius $R$ is lying in $Y-Z$ plane. Magnetic field at point $O$ is : [2015]

(a) $\overrightarrow{{}B}=-\frac{\mu_0}{4 \pi} \frac{I}{R}(\mu \hat{i} \times \hat{k})$

(b) $\overrightarrow{{}B}=-\frac{\mu_0}{4 \pi} \frac{I}{R}(\pi \hat{i}+2 \hat{k})$

(c) $\overrightarrow{{}B}=\frac{\mu_0}{4 \pi} \frac{I}{R}(\pi \hat{i}-2 \hat{k})$

(d) $\overrightarrow{B}=\frac{\mu_0}{4 \pi} \frac{I}{R}(\pi \hat{i}+2 \hat{k})$

Show Answer

Answer:

Correct Answer: 30.(b)

Solution:

  1. (b) Magnetic field due to segment ’ 1 '

$ \begin{alignedat} & \overrightarrow{{}B_1}=\frac{\mu_0 I}{4 \pi R}\sin 90^{\circ}+\sin 0^{\circ} \\ & =\frac{-\mu_0 I}{4 \pi R}(\hat{k})=\overrightarrow{B}_3 \end{aligned} $

Magnetic field due to segment 2

$ B_2=\frac{\mu_0 I}{4 R}(-\hat{i})=\frac{-\mu_0 I}{4 \pi R}(\hat{i}) $

$\therefore \overrightarrow{B}$ at centre

$ \overrightarrow{{}B}_c=\overrightarrow{{}B}_1+\overrightarrow{{}B}_2+\overrightarrow{{}B}_3=\frac{-\mu_0 I}{4 \pi R}(\pi \hat{i}+2 \hat{k}) $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ