Moving Charges And Magnetism Ques 41

41. Two long parallel wires $P$ and $Q$ are both perpendicular to the plane of the paper with distance of $5$ $ m$ between them. If $P$ and $Q$ carry currents of $2.5$ $ amp$ and $5$ $ amp$ respectively in the same direction, then the magnetic field at a point half-way between the wires is

[2000 BCE]

(a) $\frac{3 \mu_0}{2 \pi}$

(b) $\frac{\mu_0}{\pi}$

(c) $\frac{\sqrt{3} \mu_0}{2 \pi}$

(d) $\frac{\mu_0}{2 \pi}$

Show Answer

Answer:

Correct Answer: 41.(d)

Solution:

When the current flows in both wires in the same direction, the magnetic field at half way due to the wire $P$ is cancelled by the magnetic field due to the wire $Q$

$ \vec{B} _p=\frac{\mu_0 I_1}{2 \pi \cdot \frac{5}{2}}=\frac{\mu_0 I_1}{\pi \cdot 5}=\frac{\mu_0}{2 \pi} \quad($ where $I_1=2.5 $ $amp)$

The direction of $ \vec{B} _p$ is upward $\odot$

Magnetic field at half way due to wire $I$

$ \vec{B} _Q=\frac{\mu_0 I_2}{2 \pi \cdot \frac{5}{2}}=\frac{\mu_0 I_2}{5 \pi} \quad[$ upward $\otimes]$

[where $I_2=2.5$ $A$.]

Net magnetic field at half way

$ \begin{alignedat} \vec{B} & =\vec{B} \times \vec{P}+\vec{B} \times \vec{Q} \\ & =-\frac{\mu_0}{2 \pi}+\frac{\mu_0}{\pi}=\frac{\mu_0}{2 \pi} \quad \text{ (upward) } \end{aligned} $

Hence, net magnetic field at midpoint $=\frac{\mu_0 I}{2 \pi r}$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ