Moving Charges And Magnetism Ques 57

57. A square loop $A B C D$ carrying a current $i$, is placed near and coplanar with a long straight conductor $XY$ carrying a current $I$, the net force on the loop will be :

[2016]

(a) $\frac{2 \mu_0 I i}{3 \pi}$

(b) $\frac{\mu_0 I i}{2 \pi}$

(c) $\frac{2 \mu_0 I i L}{3 \pi}$

(d) $\frac{\mu_0 I i L}{2 \pi}$

Show Answer

Answer:

Correct Answer: 57.(a)

Solution:

  1. (a) The direction of current in conductor

$XY$ and $AB$ is same

$\therefore \quad F _{AB}=i \ell B \quad$ (attractive)

$F _{AB}=i(L) \cdot \frac{\mu_0 I}{2 \pi(\frac{L}{2})}(\leftarrow)=\frac{\mu_0 iI}{\pi}(\leftarrow)$

$F _{BC}$ opposite to $F _{AD}$

$F _{BC}(\uparrow)$ and $F _{AD}(\downarrow)$

$\Rightarrow$ cancels each other

$F _{CD}=i \ell B$ (repulsive)

$F _{CD}=i(L) \frac{\mu_0 I}{2 \pi(\frac{3 L}{2})}(\rightarrow)=\frac{\mu_0 i I}{3 \pi}(\rightarrow)$

Therefore the net force on the loop

$F _{\text{net }}=F _{AB}+F _{BC}+F _{CD}+F _{AD}$

$\Rightarrow F _{\text{net }}=\frac{\mu_o iI}{\pi}-\frac{\mu_o iI}{3 \pi}=\frac{2 \mu_o iI}{3 \pi}$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ