Nuclei Ques 26

26. Two nuclei have their mass numbers in the ratio of $1: 3$. The ratio of their nuclear densities would be

[2008]

(a) $1: 3$

(b) $3: 1$

(c) $(3)^{1 / 3}: 1$

(d) $1: 1$

Show Answer

Answer:

Correct Answer: 26.(d)

Solution:

  1. (d) Requird ratio of nuclear densities $=\frac{r_1}{r_2}$

$ \begin{aligned} & =\frac{(\frac{M_1}{V_1})}{(\frac{M_2}{V_2})}=\frac{M_1}{M_2} \times \frac{V_2}{V_1}=\frac{1}{3} \times \frac{\frac{4}{3} \pi R_2^{3}}{\frac{4}{3} \pi R_1^{3}} \\ & =\frac{1}{3} \times(\frac{R_2}{R_1})^{3}=\frac{1}{3} \times(\frac{R_0 M_2^{1 / 3}}{R_0 M_1^{1 / 3}})^{3}[\therefore R=R_0 M^{1 / 3}] \end{aligned} $

$=\frac{1}{3} \times(\frac{M_2}{M_1})=\frac{1}{3} \times(\frac{3}{1})=1: 1$

Nuclear density, $\rho=\frac{3 m}{4 \pi R_0^{3}}$

Here, $R_0=1.2 \times 10^{-15} m m=$ Average of mass of a nuclean (mass of proton + mass of neutron) $=1.66 \times 10^{-27} kg$

This formula suggest that density of nuclear matter is same for all nuclei.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ