Nuclei Ques 66

66. The half life of a radioactive nucleus is 50 days. The time interval $(t_2-t_1)$ between the time $t_2$ when $\frac{2}{3}$ of it has decayed and the time $t_1$ when $\frac{1}{3}$ of it had decayed is :

[2012M]

(a) 30 days

(b) 50 days

(c) 60 days

(d) 15 days

Show Answer

Answer:

Correct Answer: 66.(b)

Solution:

$ \begin{align*} \text{ (b) } N_1 & =N_0 e^{-\lambda t} \quad N_1=\frac{1}{3} N_0 \\ \frac{N_0}{3} & =N_0 e^{-\lambda t_2} \\ \Rightarrow \quad \frac{1}{3} & =e^{-\lambda t^{2}} \tag{i}\\ N_2 & =\frac{2}{3} N_0 \end{align*} $

$ \begin{align*} \frac{2}{3} N_0 & =N_0 e^{-\lambda t_1} \\ \Rightarrow \quad \frac{2}{3} & =e^{-\lambda t_1} \tag{ii} \end{align*} $

Dividing equation (i) by equation (ii)

$ \begin{aligned} & \frac{1}{2}=e^{-\lambda(t_2-t_1)} \\ & \lambda(t_2-t_1)=\ln 2 \\ & t_2-t_1=\frac{\ln 2}{\lambda}=T _{1 / 2}=50 \text{ days } \end{aligned} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ