Nuclei Ques 76

76. Two radioactive substances $A$ and $B$ have decay constants $5 \lambda$ and $\lambda$ respectively. At $t=0$ they have the same number of nuclei. The ratio of number of nuclei of A to those of B will be $(1 / e)^{2}$ after a time interval

[2007]

(a) $4 \lambda$

(b) $2 \lambda$

(c) $1 / 2 \lambda$

(d) $1 / 4 \lambda$

Show Answer

Answer:

Correct Answer: 76.(c)

Solution:

  1. (c) $\lambda_A=5 \lambda$ and $\lambda_B=\lambda$

At $t=0,(N_0) _{A}=(N_0) _{B}$

Given, $\frac{N_A}{N_B}=(\frac{1}{e})^{2}$

According to radioactive decay,

$\frac{N}{N_0}=e^{-\lambda t}$ $\therefore \frac{N_A}{(N_0) _{A}}=e^{-\lambda A^{t}}$

$\frac{N_B}{(N_0) _{B}}=e^{-\lambda_B t}$

From (1) and (2),

$\frac{N_A}{N_B}=e^{-(5 \lambda-\lambda) t}$

$ \begin{aligned} & \Rightarrow(\frac{1}{e})^{2}=e^{-4 \lambda t}=(\frac{1}{e})^{4 \lambda t} \\ & \Rightarrow 4 \lambda t=2 \quad \therefore t=\frac{1}{2 \lambda} . \end{aligned} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ