Oscillations Ques 14

14. Two simple harmonic motions act on a particle. These harmonic motions are $x=A \cos (\omega t+\delta)$, $y=A \cos (\omega t+\alpha)$ when $\delta=\alpha+\frac{\pi}{2}$, the resulting motion is

[2000]

(a) a circle and the actual motion is clockwise

(b) an ellipse and the actual motion is counterclockwise

(c) an ellipse and the actual motion is clockwise

(d) a circle and the actual motion is counter clockwise

Show Answer

Answer:

Correct Answer: 14.(d)

Solution:

  1. (d) $x=A \cos (\omega t+\delta)$

$y=A \cos (\omega t+\alpha)$

When $\delta=\alpha+\frac{\pi}{2}$

$x=A \cos (\frac{\pi}{2}+\omega t+\alpha)$

$x=-A \sin (\omega t+\alpha)$

Squaring (1) and (2) and then adding $x^{2}+y^{2}=A^{2}[\cos ^{2}(\omega t+\alpha)+\sin ^{2}(\omega t+\alpha)]$ or $x^{2}+y^{2}=A^{2}$, which is the equation of a circle. The present motion is anticlockwise.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ