Oscillations Ques 21

21. The composition of two simple harmonic motions of equal periods at right angle to each other and with a phase difference of $\pi$ results in the displacement of the particle along

[1990]

(a) circle

(b) figures of eight

(c) straight line

(d) ellipse

Show Answer

Answer:

Correct Answer: 21.(c)

Solution:

  1. (c) $x=a \sin \omega t$ and $y=b \sin (\omega t+\pi)=-b \sin \omega t$

or, $\frac{x}{a}=-\frac{y}{b}$ or $y=-\frac{b}{a} x$

It is an equation of a straight line.

If two mutually perpendicular S.H.M’s of same frequency be $x=9$, sin $\omega t$ and $y=a_2 \sin (\omega t+\phi)$ then general equation of Lissajous figure is

$ \begin{aligned} & \frac{x^{2}}{a_1^{2}}+\frac{y_2}{a_2^{2}}-\frac{2 x y}{a_1 a_2} \cos \phi=\sin ^{2} \phi \\ & \text{ For } \phi=\pi \frac{x^{2}}{a_1^{2}}+\frac{y^{2}}{a_2^{2}}-\frac{2 x y}{a_1 a_2} \cos (\pi)=\sin 2(\pi) \\ & \Rightarrow \frac{x}{a_1}+\frac{y}{a_2}=0 \quad \frac{x}{a}+\frac{y}{a^{2}}=0 \Rightarrow y=\frac{-a_2}{a_1} x \end{aligned} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ