Oscillations Ques 23

23. The particle executing simple harmonic motion has a kinetic energy $K_0 \cos ^{2} \omega t$. The maximum values of the potential energy and the total energy are respectively

[2007]

(a) $K_0 / 2$ and $K_0$

(b) $K_0$ and $2 K_0$

(c) $K_0$ and $K_0$

(d) $0$ and $2 K_0$.

Show Answer

Answer:

Correct Answer: 23.(c)

Solution:

  1. (c) We have, $U+K=E$ where, $U=$ potential energy, $K=$ Kinetic energy, $E=$ Total energy.

Also, we know that, in S.H.M., when potential energy is maximum, K.E. is zero and vice-versa.

$\therefore U _{\max }+0=E \Rightarrow U _{\max }=E$

Further,

$K . E .=\frac{1}{2} m \omega^{2} a^{2} \cos ^{2} \omega t$

But by question, $K . E .=K_0 \cos ^{2} \omega t$

$\therefore K_0=\frac{1}{2} m \omega^{2} a^{2}$

Hence, total energy, $E=\frac{1}{2} m \omega^{2} a^{2}=K_0$

$\therefore U _{\max }=K_0$ & $ E=K_0$.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ