Oscillations Ques 27

27. A particle is executing a simple harmonic motion of amplitude ’ $a$ ‘. Its potential energy is maximum when the displacement from the position of the maximum kinetic energy is

[2002]

(a) 0

(b) $\pm a$

(c) $\pm a / 2$

(d) $-a / 2$

Show Answer

Answer:

Correct Answer: 27.(b)

Solution:

  1. (b) P.E. of particle executing S.H.M.

$=\frac{1}{2} m \omega^{2} x^{2}$

At $x=a$, P.E. is maximum i.e. $=\frac{1}{2} m \omega^{2} a^{2}$

K.E. $=\frac{1}{2} m \omega^{2}(a^{2}-x^{2})$

At $x=0$, K.E. is maximum. Hence, displacement from position of maximum Kinetic energy $= \pm a$.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ