Oscillations Ques 30

30. In a simple harmonic motion, when the displacement is one-half the amplitude, what fraction of the total energy is kinetic?

[1996]

(a) 0

(b) $\frac{1}{4}$

(c) $\frac{1}{2}$

(d) $\frac{3}{4}$

Show Answer

Answer:

Correct Answer: 30.(d)

Solution:

  1. (d) Total energy of particle executing S.H.M. of amplitude (A).

$E=\frac{1}{2} m \omega^{2} A^{2}$

K.E.of the particle

$=\frac{1}{2} m \omega^{2}(A^{2}-\frac{A^{2}}{4}) \quad(.$ when $.x=\frac{A}{2})$

$=\frac{1}{2} m \omega^{2} \times \frac{3}{4} A^{2}=\frac{1}{2} \times \frac{3}{4} m \omega^{2} A^{2}$

Clearly, $\frac{KE}{\text{ Total Energy }}=\frac{3}{4}$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ