Oscillations Ques 33

33. The angular velocity and the amplitude of a simple pendulum is $\omega$ and a respectively. At a displacement $x$ from the mean position if its kinetic energy is $T$ and potential energy is $V$, then the ratio of $T$ to $V$ is

[1991]

(a) $\frac{(a^{2}-x^{2} \omega^{2})}{x^{2} \omega^{2}}$

(b) $\frac{x^{2} \omega^{2}}{(a^{2}-x^{2} \omega^{2})}$

(c) $\frac{(a^{2}-x^{2})}{x^{2}}$

(d) $\frac{x^{2}}{(a^{2}-x^{2})}$

Show Answer

Answer:

Correct Answer: 33.(c)

Solution:

  1. (c) P.E., $V=\frac{1}{2} m \omega^{2} x^{2}$

and K.E., $T=\frac{1}{2} m \omega^{2}(a^{2}-x^{2})$

$\therefore \frac{T}{V}=\frac{a^{2}-x^{2}}{x^{2}}$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ