Oscillations Ques 44

44. A point performs simple harmonic oscillation of period $T$ and the equation of motion is given by $x=a \sin (\omega t+\pi / 6)$. After the elapse of what fraction of the time period the velocity of the point will be equal to halfof its maximum velocity?

[2008]

(a) $T / 8$

(b) $T / 6$

(c) $T / 3$

(d) $T / 12$

Show Answer

Answer:

Correct Answer: 44.(d)

Solution:

  1. (d) We have $x=a \sin (\omega t+\frac{\pi}{6})$

$\therefore$ Velocity, $v=\frac{dx}{dt}=a \omega \cos (\omega t+\frac{\pi}{6})$

Maximum velocity $=a \omega$

According to question,

$\frac{a \omega}{2}=a \omega \cos (\omega t+\frac{\pi}{6})$

or, $\cos (\omega t+\frac{\pi}{6})=\frac{1}{2}=\cos 60^{\circ}$ or $\cos \frac{p}{3}$

$\Rightarrow wt+\frac{p}{6}=\frac{p}{3}$

$wt=\frac{p}{3}-\frac{p}{6}$ or, $wt=\frac{p}{6}$ or,

$\frac{2 p}{T} \cdot t=\frac{p}{6} \Rightarrow t=\frac{T}{12}$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ