Oscillations Ques 49

49. A body of mass M, executes vertical SHM with periods $t_1$ and $t_2$, when separately attached to spring A and spring B respectively. The period of SHM, when the body executes SHM, as shown in the figure is $t_0$. Then

[2002]

(a) $t_0^{-1}=t_1^{-1}+t_2^{-1}$

(b) $t_0=t_1+t_2$

(c) $t_0^{2}=t_1^{2}+t_2^{2}$

(d) $t_0{ }^{-2}=t_1{ }^{-2}+t_2{ }^{-2}$

Show Answer

Answer:

Correct Answer: 49.(d)

Solution:

  1. (d) The time period of spring mass system,

$ T=2 \pi \sqrt{\frac{m}{K}} $

$\therefore \quad t_1=2 \pi \sqrt{\frac{m}{k_1}}$

$ \begin{equation*} t_2=2 \pi \sqrt{\frac{m}{k_2}} \tag{ii} \end{equation*} $

When springs are connected in parallel then $K _{\text{eff }}=k_1+k_2$

So, $t_0=2 \pi \sqrt{\frac{m}{k _{eff}}} \Rightarrow 2 \pi \sqrt{\frac{m}{(k _{1+k_2})}}$

from (i), $\frac{1}{t_1^{2}}=\frac{1}{4 \pi^{2}} \times \frac{k_1}{m}$

from (ii), $\frac{1}{t_2^{2}}=\frac{1}{4 \pi^{2}} \times \frac{k_2}{m}$

from (iii), $\frac{1}{t_0^{2}}=\frac{1}{4 \pi^{2}} \times \frac{(k_1+k_2)}{m}$

from above expressions,

$\frac{1}{t_0^{2}}=\frac{1}{t_1^{2}}+\frac{1}{t_2^{2}}$

$ t=2 \pi \sqrt{\frac{m}{k}} $

$\Rightarrow \quad k=$ Const. $t^{-2}$

Here the springs are joined in parallel. So

$ k_0=k_1+k_2 $

where $k_0$ is resultant force constant

$\therefore$ Const. $t_0^{-2}=$ Const. $t_1^{-2}+$ Const. $t_2^{-2}$

or, $t_0^{-2}=t_1^{-2}+t_2^{-2}$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ