Oscillations Ques 51

51. When two displacements represented by $y_1=a \sin (\omega t)$ and $y_2=b \cos (\omega t)$ are superimposed the motion is:

[2015]

(a) simple harmonic with amplitude $\frac{a}{b}$

(b) simple harmonic with amplitude $\sqrt{a^{2}+b^{2}}$

(c) simple harmonic with amplitude $\frac{(a+b)}{2}$

(d) not a simple harmonic

Show Answer

Answer:

Correct Answer: 51.(b)

Solution:

  1. (b) The two displacements equations are $y_1=a \sin (\omega t)$

$ \begin{aligned} & \text{ and } y_2=b \cos (\omega t)=b \sin (\omega t+\frac{\pi}{2}) \\ & \begin{matrix} y _{eq}=y_1+y_2 \\ \quad=a \sin \omega t+b \cos \omega t \end{matrix} \end{aligned} $

$ =a \sin \omega t+b \sin (\omega t+\frac{\pi}{2}) $

Since the frequencies for both SHMs are same, resultant motion will be SHM.

Now amplitude, $A _{e q}=\sqrt{a^{2}+b^{2}+2 a b \cos \frac{\pi}{2}}$

$ \Rightarrow A _{e q}=\sqrt{a^{2}+b^{2}} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ