Oscillations Ques 6

6. The equation of a simple harmonic wave is given by

$ y=3 \sin \frac{\pi}{2}(50 t-x) $

Where $x$ and $y$ are in meters and $t$ is in seconds. The ratio of maximum particle velocity to the wave velocity is

[2012 M]

(a) $2 $ $\pi$

(b) $\frac{3}{2} $ $\pi$

(c) $3$ $ \pi$

(d) $\frac{2}{3}$ $ \pi$

Show Answer

Answer:

Correct Answer: 6.(b)

Solution: (b) $y=3 \sin \frac{\pi}{2}(50 t-x)$

$y=3 \sin \left(25 \pi t-\frac{\pi}{2} x\right)$ on comparing with the standard wave equation

$y=a \sin (\omega t-k x)$

Wave velocity $v=\frac{\omega}{k}=\frac{25 \pi}{\pi / 2}=50 \mathrm{m} / \mathrm{sec}$.

The velocity of particle

$ \begin{aligned} & v_p=\frac{\partial y}{\partial t}=75 \pi \cos \left(25 \pi t-\frac{\pi}{2} x\right) \\ & v_{p \max }=75 \pi \\ & \text { then } \frac{v_{p_{\max }}}{v}=\frac{75 \pi}{50}=\frac{3 \pi}{2} \end{aligned} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ