Oscillations Ques 63

63. A mass $m$ is suspended from a two coupled springs, connected in series. The force constant for springs are $k_1$ and $k_2$. The time period of the suspended mass will be

[1990]

(a) $T=2 \pi \sqrt{\frac{m}{k_1-k_2}}$

(b) $T=2 \pi \sqrt{\frac{m k_1 k_2}{k_1+k_2}}$

(c) $T=2 \pi \sqrt{\frac{m}{k_1+k_2}}$

(d) $T=2 \pi \sqrt{\frac{m(k_1+k_2)}{k_1 k_2}}$

Show Answer

Answer:

Correct Answer: 63.(d)

Solution:

  1. (d) The effective spring constant of two springs in series; $K=\frac{k_1 k_2}{k_1+k_2}$.

Time period,

$T=2 \pi \sqrt{\frac{m}{K}}=2 \pi \sqrt{\frac{m(k_1+k_2)}{k_1 k_2}}$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ