Oscillations Ques 8

8. The displacement of a particle along the $x$-axis is given by $x=a \sin ^{2} \omega t$. The motion of the particle corresponds to:

[2010]

(a) simple harmonic motion of frequency $\omega$

(b) simple harmonic motion of frequency $3 \omega / 2 \pi$

(c) non simple harmonic motion

(d) simple harmonic motion of frequency $\omega / 2 \pi$

Show Answer

Answer:

Correct Answer: 8.(a)

Solution:

  1. (a) $x=a \sin ^{2} \omega t=\frac{a}{2}(1-\cos 2 \omega t)$

$\frac{d x}{d t}=\frac{a}{2} 2 \omega \sin 2 \omega t$

$\Rightarrow \frac{d^{2} x}{d t^{2}}=\frac{4 \omega^{2} a}{2} \cdot \cos 2 \omega t$

This represents an S. H. M. of motion

$=\frac{\omega}{\pi}$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ