Physical World Units And Measurements Ques 1

1. The dimensions of universal gravitational constant is

[2004]

(a) $\left[\mathrm{M}^{-2} \mathrm{L}^2 \mathrm{T}^{-1}\right]$

(b) $\left[\mathrm{M}^{-1} \mathrm{L}^3 \mathrm{T}^{-2}\right]$

(c) $\left[\mathrm{ML}^2 \mathrm{T}^{-1}\right]$

(d) $\left[\mathrm{M}^{-2} \mathrm{L}^3 \mathrm{T}^{-2}\right]$

Show Answer

Answer:

Correct Answer: 1.(b)

Solution: (b) $F=\frac{G M_1 m_2}{r^2} \Rightarrow G=\frac{F r^2}{M_1 m_2}$

$\therefore$ dimension of G is $\frac{\left[\mathrm{MLT}^{-2}\right]\left[\mathrm{L}^2\right]}{[\mathrm{M}][\mathrm{M}]}$

$ =\left[\mathrm{M}^{-1} \mathrm{L}^3 \mathrm{T}^{-2}\right] $