Physical World Units And Measurements Ques 23

23. P represents radiation pressure, $c$ represents speed of light and $S$ represents radiation energy striking unit area per sec. The non zero integers $x, y, z$ such that $P^{x} S^{y} c^{z}$ is dimensionless are

(a) $x=1, y=1, z=1$

(b) $x=-1, y=1, z=1$

(c) $x=1, y=-1, z=1$

(d) $x=1, y=1, z=-1$

Show Answer

Answer:

Correct Answer: 23.(c)

Solution:

  1. (c) Let the expression, $\alpha=P^{x} S^{y} c^{z} \quad$ $\quad$ …….(i)

and given that dimension of $\alpha=[M^{0} L^{0} T^{0}] =$ dimensionless $\quad$ …….(ii)

Dimension fo radiation pressure $P=\frac{\text{ Force }}{\text{ Area }}$

$ =\frac{[MLT^{-2}]}{[L^{2}]}=[ML^{-1} T^{-2}] $

Dimension of radiation energy/unit area unit time

$S=\frac{\text{ Energy }}{\text{ Area } \times \text{ Time }}=\frac{[ML^{2} T^{-2}]}{[L^{2}][T]}=[MT^{-3}]$

Dimension of speed of light, $c=[LT^{-1}]$

By equation (i) we get,

So, the dimension of $\alpha=[ML^{-1} T^{-2}]^{x}[MT^{-3}]^{y}$

$[LT^{-1}]^{z}$

According to equation (ii),

$\Rightarrow[M^{0} L^{0} T^{0}]=[ML^{-1} T^{-2}]^{x}[MT^{-3}]^{y}[LT^{-1}]^{z}$

$\Rightarrow[M^{0} L^{0} T^{0}]=[M^{x+y} L^{-x+z} T^{-2 x-3 y-z}]$

Applying the principle of homegenity of dimension we get,

$x+y=0$ $\quad$ …….(iii)

$-x+z=0$ $\quad$ …….(iv)

$-2 x-3 y-z=0$ $\quad$ …….(v)

After solving above three equation we get, $x=1 ; y=-1 ; z=1$

Try out the given alternatives. When $x=1, y=-1, z=1$

$ \begin{aligned} P^{x} y _{c^{z}} & =P^{1} S^{-1} c^{1}=\frac{P c}{S} \\ & =\frac{[M L^{-1} T^{-2}][L T^{-1}]}{[M L^{2} T^{-2} / L^{2} T]}=[M^{0} L^{0} T^{0}] \end{aligned} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ