Physical World Units And Measurements Ques 27

27. The frequency of vibration $f$ of a mass $m$ suspended from a spring of spring constant $k$ is given by a relation of the type $f=c m^{x} k^{y}$, where $c$ is a dimensionless constant. The values of $x$ and $y$ are

[1990]

(a) $x=\frac{1}{2}, y=\frac{1}{2}$

(b) $x=-\frac{1}{2}, y=-\frac{1}{2}$

(c) $x=\frac{1}{2}, y=-\frac{1}{2}$

(d) $x=-\frac{1}{2}, y=\frac{1}{2}$

Show Answer

Answer:

Correct Answer: 27.(d)

Solution:

  1. (d) $f=c m^{x} k^{y}$;

Spring constant $k=$ force/length.

$[M^{0} L^{0} T^{-1}]=[M^{x}][MT^{-2}]^{y}=[M^{x+y} T^{-2 y}]$

$\Rightarrow x+y=0,-2 y=-1$ or $y=\frac{1}{2}$

Therefore, $x=-\frac{1}{2}$

The method of dimensions cannot be used to derive relations other than product of power functions.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ