Physical World Units And Measurements Ques 35

35. If energy (E), velocity (V) and time (T) are chosen as the fundamental quantities, the dimensional formula of surface tension will be:

(a) $[EV^{-1} T^{-2}]$

(b) $[EV^{-2} T^{-2}]$

(c) $[E^{-2} V^{-1} T^{-3}]$

(d) $[EV^{-2} T^{-1}]$

[2015]

Show Answer

Answer:

Correct Answer: 35.(b)

Solution:

  1. (b) As we know that, surface tension(s) =

$\frac{\text{ Force }[F]}{\text{ Length }[L]}$

So, $[S]=\frac{[M L T^{-2}]}{[L]}=[MT^{-2}]$

Energy, $(E)=$ Force $\times$ Displacement,

$[E]=[ML^{2} T^{-2}]$

Velocity $(V)=\frac{\text{ displacement }}{\text{ time }}$

$ [V]=[LT^{-1}] $

Let surface tension expressed as,

$s=E^{a} V^{b} T^{c}$ where $a, b, c$ are constant.

Put the value

$ \frac{[MLT^{-2}]}{[L]}=[ML^{2} T^{-2}]^{a}[\frac{L}{T}]^{b}[T]^{c} $

From the principle of homogeneity, Equating the dimension of LHS and RHS

$[ML^{0} T^{-2}]=[M^{a} L^{2 a+b} T^{-2 a-b+c}]$

$\Rightarrow a=1,2 a+b=0,-2 a-b+c=-2$

$\Rightarrow a=1, b=-2, c=-2$

Hence, the dimensions of surface tension are $[EV^{-2} T^{-2}]$

Length, mass and time are arbitrarily chosen as fundamental quantities in mechanics. In fact any three quantities in mechanics can be termed as fundamental as all other quantities can be expressed in terms of these. If force (F) and acceleration (a) are taken as fundamental quantities, then mass will be defined as force $(F)$ and acceleration (a) will be termed as derived quantity.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ