Physical World Units And Measurements Ques 4

4. If dimensions of critical velocity $v_c$ of a liquid flowing through a tube are expressed as $[\eta^{x} \rho^{y} r^{z}]$, where $\eta, \rho$ and $r$ are the coefficient of viscosity of liquid, density of liquid and radius of the tube respectively, then the values of $x, y$ and $z$ are given by :

[2015 RS]

(a) $-1,-1,1$

(b) $-1,-1,-1$

(c) $1,1,1$

(d) $1,-1,-1$

Show Answer

Answer:

Correct Answer: 4.(d)

Solution:

  1. (d) Applying dimensional method: $v_c=\eta^{x} \rho^{y_r z}$

here,

dimension of critical velocity, $V_0=[LT^{-1}]$

co-efficient of viscosity, $\eta=\frac{F}{6 \pi r v}$

so dimension of $\eta=\frac{[MLT^{-2}]}{[L][L T^{-1}]}=[ML^{-1} T^{-1}]$

dimension of density, $\rho=\frac{[M]}{[L^{3}]}=[ML^{-3}]$

dimension of radius, $r=[L]$

Put these values in equation (i), $[M^{0} LT^{-1}]=[ML^{-1} T^{-1}]^{x}[ML^{-3} T^{0}]^{y}[M^{0} LT^{0}]^{z}$

Equating powers both sides

$x+y=0 ;-x=-1 \therefore x=1$

$1+y=0 \therefore y=-1$

$-x-3 y+z=1$

$-1-3(-1)+z=1$

$-1+3+z=1$

$\therefore z=-1$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ