Ray Optics And Optical Instruments Ques 14

14. Light enters at an angle of incidence in a transparent rod of refractive index $n$. For what value of the refractive index of the material of the rod the light once entered into it will not leave it through its lateral face whatsoever be the value of angle of incidence?

[1998]

(a) $n>\sqrt{2}$

(b) $n=1$

(c) $n=1.1$

(d) $n=1.3$

Show Answer

Answer:

Correct Answer: 14.(a)

Solution:

  1. (a) Let a ray of light enter at $A$ and the refracted beam is $A B$. This is incident at an angle $\theta$. For no refraction at the lateral face, $\theta>C$

or, $\sin \theta>\sin C$ But $\theta+r=90^{\circ} \Rightarrow \theta=(90^{\circ}-r)$

$\therefore \sin (90^{\circ}-r)>\sin C$

or $\cos r>\sin C$

From Snell’s law, $n=\frac{\sin i}{\sin r} \Rightarrow \sin r=\frac{\sin i}{n}$

$\therefore \cos r=\sqrt{1-\sin ^{2} r}=\sqrt{(1-\frac{\sin ^{2} i}{n^{2}})}$

$\therefore$ equation (1) gives

$\sqrt{1-\frac{\sin ^{2} i}{n^{2}}}>\sin C \Rightarrow 1-\frac{\sin ^{2} i}{n^{2}}>\sin ^{2} C$

Also, $\sin C=\frac{1}{n}$

$\therefore 1-\frac{\sin ^{2} i}{n^{2}}>\frac{1}{n^{2}}$ or $1>\frac{\sin ^{2} i}{n^{2}}+\frac{1}{n^{2}}$

or $\frac{1}{n^{2}}(\sin ^{2} i+1)<1$ or $n^{2}>(\sin ^{2} i+1)$

Maximum value of $\sin i=1$

$\therefore n^{2}>2 \Rightarrow n>\sqrt{2}$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ