System Of Particles And Rotational Motion Ques 1

1. A thin circular ring of mass $\mathrm{M}$ and radius $\mathrm{R}$ is rotating in a horizontal plane about an axis vertical to its plane with a constant angular velocity $\omega$. If two objects each of mass $m$ be attached gently to the opposite ends of a diameter of the ring, the ring will then rotate with an angular velocity:

[2009, 1998]

(a) $\frac{\omega M}{M+2 m}$

(b) $\frac{\omega(M+2 m)}{M}$

(c) $\frac{\omega M}{M+m}$

(d) $\frac{\omega(M-2 m)}{M+2 m}$

Show Answer

Answer:

Correct Answer: 1.(a)

Solution: (a) In absence of external torque, $\mathrm{L}=\mathrm{I} \omega$ $=$ constant

$ \mathrm{I}_1 \omega_1=\mathrm{I}_2 \omega_2, \mathrm{I}_1=\mathrm{MR}^2, \mathrm{I}_2=\mathrm{MR}^2+2 \mathrm{mR}^2 $

(Moment of inertia of a thin circular ring about an axis vertical to its plane $=\mathrm{MR}^2$ )

$ \therefore \quad \omega_2=\frac{\mathrm{I}_1}{\mathrm{I}_2} \omega=\frac{\mathrm{M}}{\mathrm{M}+2 \mathrm{m}} \omega . $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ