System Of Particles And Rotational Motion Ques 3

3. A wheel having moment of inertia $2 \mathrm{kg}-\mathrm{m}^2$ about its vertical axis, rotates at the rate of $60 $ $\mathrm{rpm}$ about this axis. The torque which can stop the wheel’s rotation in one minute would be

[2004]

(a) $\frac{\pi}{18} $ $N-m$

(b) $\frac{2 \pi}{15}$ $ N-m$

(c) $\frac{\pi}{12} $ $N-m$

(d) $\frac{\pi}{15}$ $ N-m$

Show Answer

Answer:

Correct Answer: 3.(d)

Solution: (d) $ \mathrm{I}=2 $ $\mathrm{kgm}^2, v_0=60 $ $\mathrm{rpm}=1 \mathrm{rps} $

$ \omega_0=2 \pi v_0=2 \pi $ $\mathrm{rad} / \mathrm{sec} $

$ \omega_{\mathrm{f}}=0 \text { and } \mathrm{t}=1 \mathrm{min}=60 $ $\mathrm{sec}$

So, $\propto=\frac{\omega_f-\omega_0}{t}=\frac{0-2 \pi}{60}$

$ \alpha=\frac{-\pi}{30}$ $ \mathrm{rad} / \mathrm{sec}^2 $

$ \text { and Torque, } \tau=\text { I. } \alpha $

$ \tau=2 \cdot\left(\frac{-\pi}{30}\right)=\frac{-\pi}{15} $

$ \tau=\frac{\pi}{15} \mathrm{N}-\mathrm{m}$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ