System Of Particles And Rotational Motion Ques 31

31. Two discs are rotating about their axes, normal to the discs and passing through the centres of the discs. Disc $D_1$ has $2 $ $kg$ mass and $0.2 $ $m$ radius and initial angular velocity of $50$ $ rad $ $s^{-1}$. Disc $D_2$ has $4$ $ kg$ mass, $0.1 $ $m$ radius and initial angular velocity of $200 $ $rad $ $s^{-1}$. The two discs are brought in contact face to face, with their axes of rotation coincident. The final angular velocity (in $rad$ $ s^{-1}$ ) of the system is

[NEET Kar. 2013]

(a) $40$

(b) $60$

(c) $100$

(d) $120$

Show Answer

Answer:

Correct Answer: 31.(c)

Solution:

  1. (c) Given: $m_1=2$ $ kg$

$m_2=4$ $ kg$

$r_1=0.2 $ $m$

$r_2=0.1 $ $m$

$\omega_1=50$ $rad $ $s^{-1}$

$\omega_2=200 $ $rad $ $s^{-1}$

As, angular momentum,

$I_1 \omega_1+I_2 \omega_2=(I_1+I_2) \omega_1$

$\therefore \omega_f=\frac{I_1 \omega_1+I_2 \omega_2}{I_1+I_2}=\frac{\frac{1}{2} m_1 r_1^{2} \omega_1+\frac{1}{2} m_2 r_2^{2} \omega_2}{\frac{1}{2} m_1 r_1^{2}+\frac{1}{2} m_2 r_2^{2}}$

By putting the value of $m_1, m_2, r_1, r_2$ and solving we get $=100 $ $rad$ $ s^{-1}$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ