System Of Particles And Rotational Motion Ques 36

36. A circular disk of moment of inertia $I_t$ is rotating in a horizontal plane, its symmetry axis, with a constant angular speed $\omega_i$. Another disk of moment of inertia $I_b$ is dropped coaxially onto the rotating disk. Initially the second disk has zero angular speed. Eventually both the disks rotate with a constant angular speed $\omega_f$. The energy lost by the initially rotating disk to friction is:

[2010]

(a) $\frac{1}{2} \frac{I_b^{2}}{(I_t+I_b)} \omega_i^{2}$

(b) $\frac{I_t^{2}}{(I_t+I_b)} \omega_i^{2}$

(c) $\frac{I_b-I_t}{(I_t+I_b)} \omega_i^{2}$

(d) $\frac{1}{2} \frac{I_b I_t}{(I_t+I_b)} \omega_i^{2}$

Show Answer

Answer:

Correct Answer: 36.(d)

Solution:

  1. (d) By conservation of angular momentum, $I_t \omega_i=(I_t+I_b) \omega_f$

where $\omega_f$ is the final angular velocity of disks

$ \therefore \quad \omega_f=(\frac{I_t}{I_t+I_b}) \omega_i $

Loss in K.E., $\Delta K=$ Initial K.E. - Final K.E.

$ =\frac{1}{2} I_t \omega_i^{2}-\frac{1}{2}(I_t+I_b) \omega_f^{2} $

$=\frac{1}{2} I_t \omega_i^{2}-\frac{1}{2}(I_t+I_b) \frac{I_t^{2}}{(I_t+I_b)^{2}} \omega_i^{2}$

$=\frac{1}{2} \omega_i^{2} \frac{I_t}{I_t+I_b}(I_t+I_b-I_t)=\frac{1}{2} \omega_i^{2} \frac{I_t I_b}{I_t+I_b}$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ