System Of Particles And Rotational Motion Ques 37

37. A uniform $rod A B$ of length $\ell$, and mass $m$ is free to rotate about point $A$. The rod is released from rest in the horizontal position. Given that the moment of inertia of the rod about A is $\frac{m \ell^{2}}{3}$, the initial angular acceleration of the rod will be

(a) $\frac{m g \ell}{2}$

(b) $\frac{3}{2} g \ell$

(c) $\frac{3 g}{2 \ell}$

(d) $\frac{2 g}{3 \ell}$

Show Answer

Answer:

Correct Answer: 37.(c)

Solution:

(c)

Weight of the rod will produce torque,

$\tau=m g \times \frac{\ell}{2}$

Also, $\tau=I \alpha$

where, $I$ is the moment of inertia $=\frac{m \ell^{2}}{3}$ and $\alpha$ is the angular acceleration

$\therefore \frac{m \ell^{2}}{3} \alpha=m g \times \frac{\ell}{2} \Rightarrow \alpha=\frac{3 g}{2 \ell}$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ