System Of Particles And Rotational Motion Ques 4

4. A particle of mass $m=5$ is moving with a uniform speed $v=3 \sqrt{2}$ in the XOY plane along the line $y=x+4$. The magnitude of the angular momentum of the particle about the origin is

[1991]

(a) $60$ units

(b) $40 \sqrt{2}$ units

(c) zero

(d) $7.5$ units

Show Answer

Answer:

Correct Answer: 4.(a)

Solution: (a)

$y=x+4$ line has been shown in the figure when

$x=0, y=4$. So, $O P=4$.

The slope of the line can be obtained by comparing with the equation of the straight line

$ y=m x+c $

$ m=\tan \theta=1 $

$ \Rightarrow \theta=45^{\circ} $

$ \angle O Q P=\angle O P Q=45^{\circ}$

If we draw a line perpendicular to this line, length of the perpendicular $=O R$

$\text { In } \triangle O P R, \frac{O R}{O P}=\sin 45^{\circ} $

$\Rightarrow O R =O P \sin 45^{\circ} $

$= 4 \times \frac{1}{\sqrt{2}}=\frac{4}{\sqrt{2}}=2 \sqrt{2}$

Angular momentum of particle going along this

$ \text { line }=r \times m v=2 \sqrt{2} \times 5 \times 3 \sqrt{2}=60 \text { units } $