System Of Particles And Rotational Motion Ques 4

4. A particle of mass $m=5$ is moving with a uniform speed $v=3 \sqrt{2}$ in the XOY plane along the line $y=x+4$. The magnitude of the angular momentum of the particle about the origin is

[1991]

(a) $60$ units

(b) $40 \sqrt{2}$ units

(c) zero

(d) $7.5$ units

Show Answer

Answer:

Correct Answer: 4.(a)

Solution: (a)

$y=x+4$ line has been shown in the figure when

$x=0, y=4$. So, $O P=4$.

The slope of the line can be obtained by comparing with the equation of the straight line

$ y=m x+c $

$ m=\tan \theta=1 $

$ \Rightarrow \theta=45^{\circ} $

$ \angle O Q P=\angle O P Q=45^{\circ}$

If we draw a line perpendicular to this line, length of the perpendicular $=O R$

$\text { In } \triangle O P R, \frac{O R}{O P}=\sin 45^{\circ} $

$\Rightarrow O R =O P \sin 45^{\circ} $

$= 4 \times \frac{1}{\sqrt{2}}=\frac{4}{\sqrt{2}}=2 \sqrt{2}$

Angular momentum of particle going along this

$ \text { line }=r \times m v=2 \sqrt{2} \times 5 \times 3 \sqrt{2}=60 \text { units } $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ