System Of Particles And Rotational Motion Ques 44

44. A thin circular ring of mass $M$ and radius $r$ is rotating about its axis with a constant angular velocity $\omega$. Four objects each of mass m, are kept gently to the opposite ends of two perpendicular diameters of the ring. The angular velocity of the ring will be

[2003]

(a) $\frac{(M-4 m) \omega}{M+4 m}$

(b) $\frac{M \omega}{4 m}$

(c) $\frac{M \omega}{M+4 m}$

(d) $\frac{(M+4 m) \omega}{M}$

Show Answer

Answer:

Correct Answer: 44.(c)

Solution:

  1. (c) Applying conservation law of angular momentum, $I_1 \omega_1=I_2 \omega_2$

$I_2=(M r^{2})+4(m)(r^{2})=(M+4 m) r^{2}$

$ \begin{aligned} & .\quad \text{ (Taking } \omega_1=\omega \text{ and } \omega_2=\omega_1) \\ \Rightarrow & M r^{2} \omega=(M+4 m) r^{2} \omega_1 \\ \Rightarrow & \omega_1=\frac{M \omega}{M+4 m} \end{aligned} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ