System Of Particles And Rotational Motion Ques 55

55. Two discs of same moment of inertia rotating about their regular axis passing through centre and perpendicular to the plane of disc with angular velocities $\omega_1$ and $\omega_2$. They are brought into contact face to face coinciding the axis of rotation. The expression for loss of energy during this process is:-

[2017]

(a) $\frac{1}{4} I(\omega_1-\omega_2)^{2}$

(b) $I(\omega_1-\omega_2)^{2}$

(c) $\frac{1}{8}(\omega_1-\omega_2)^{2}$

(d) $\frac{1}{2} I(\omega_1+\omega_2)^{2}$

Show Answer

Answer:

Correct Answer: 55.(a)

Solution:

  1. (a) Here, $I \omega_1+I \omega_2=2 I \omega$

$\Rightarrow \omega=\frac{\omega_1+\omega_2}{2}$

$(K . E) _{i}=\frac{1}{2} I \omega_1^{2}+\frac{1}{2} I \omega_2^{2}$

(K.E. $) _{f}=\frac{1}{2} \times 2 I \omega^{2}=I(\frac{\omega_1+\omega_2}{2})^{2}$

Loss in K.E. $=(K . E) _{f}-(K . E) _{i}=\frac{1}{4} I(\omega_1-\omega_2)^{2}$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ