System Of Particles And Rotational Motion Ques 6

6. A ball rolls without slipping. The radius of gyration of the ball about an axis passing through its centre of mass is $\mathrm{K}$. If radius of the ball be $\mathrm{R}$, then the fraction of total energy associated with its rotational energy will be

[2003]

(a) $\frac{R^2}{K^2+R^2}$

(b) $\frac{K^2+R^2}{R^2}$

(c) $\frac{K^2}{R^2}$

(d) $\frac{K^2}{K^2+R^2}$

Show Answer

Answer:

Correct Answer: 6.(d)

Solution: (d) As we know that,

Rotational energy $=\frac{1}{2} I(\omega)^2=\frac{1}{2}\left(m K^2\right) \omega^2$ And,

Linear kinetic energy $=\frac{1}{2} m \omega^2 R^2$

$\therefore$ Required fraction,

$ =\frac{\frac{1}{2}\left(m K^2\right) \omega^2}{\frac{1}{2}\left(m K^2\right) \omega^2+\frac{1}{2} m \omega^2 R^2}=\left(\frac{K^2}{K^2+R^2}\right) $