System Of Particles And Rotational Motion Ques 76

76. A disc of radius $2 m$ and mass $100 kg$ rolls on a horizontal floor. Its centre of mass has speed of $20 cm / s$. How much work is needed to stop it ?

[2019]

(a) $3 J$

(b) $30 kJ$

(c) $2 J$

(d) $1 J$

Show Answer

Answer:

Correct Answer: 76.(a)

Solution:

  1. (a) Work done to stop the disc $=$ change in total kinetic energy of disc

Final $KE=0$

Initial $KE=$ Translational K.E. + Rotational K.E.

$=\frac{1}{2} mv^{2}+\frac{1}{2} 1 \omega^{2}$

$=\frac{1}{2} mv^{2}+\frac{1}{2} \times \frac{mR^{2}}{2} \times(\frac{v}{R})^{2}$

$=\frac{1}{2} mv^{2}+\frac{1}{4} mv^{2}=\frac{3}{4} mv^{2}$

$=\frac{3}{4} \times 100 \times(20 \times 10^{-2})^{2}=3 J$

$|\Delta KE|=3 J$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ