System Of Particles And Rotational Motion Ques 86

86. A solid cylinder of mass $m$ and radius $R$ rolls down an inclined plane of height $h$ without slipping. The speed of its centre of mass when it reaches the bottom is

[2003, 1989]

(a) $\sqrt{(2 g h)}$

(b) $\sqrt{4 g h / 3}$

(c) $\sqrt{3 g h / 4}$

(d) $\sqrt{4 g / h}$

Show Answer

Answer:

Correct Answer: 86.(b)

Solution:

  1. (b) $K . E .=\frac{1}{2} I \omega^{2}+\frac{1}{2} m v^{2}$

$K . E . =\frac{1}{2}(\frac{1}{2} m r^{2}) \omega^{2}+\frac{1}{2} m v^{2}$

$ =\frac{1}{4} m v^{2}+\frac{1}{2} m v^{2}=\frac{3}{4} m v^{2}$

Now, gain in $K.E$. $=$ Loss in $P.E.$

$\frac{3}{4} m v^{2}=m g h \Rightarrow v=\sqrt{(\frac{4}{3}) g h} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ