System Of Particles And Rotational Motion Ques 87

87. A spherical ball rolls on a table without slipping. Then the fraction of its total energy associated with rotation is

[1994]

(a) $2 / 5$

(b) $2 / 7$

(c) $3 / 5$

(d) $3 / 7$

Show Answer

Answer:

Correct Answer: 87.(b)

Solution:

(b) $\frac{K_r}{E}=\frac{\frac{1}{2} M K^{2} \omega^{2}}{\frac{1}{2} M \omega^{2}[K^{2}+R^{2}]}=\frac{K^{2}}{K^{2}+R^{2}}$

$ =\frac{2 / 5}{1+2 / 5}=\frac{2}{7} $

Here, $K^{2}=\frac{2}{5} R^{2}$

When a body is executing only linear motion, its K.E. is given by $E_t=\frac{1}{2} m v^{2}$ when a body is rolling without slipping, its centre of mas has linear motion too.

Therefore, its total kinetic energy

$E=E_t+E_r$

$=\frac{1}{2} m v^{2}+\frac{1}{2} I \omega^{2}$

$=\frac{1}{2} m v^{2}+\frac{1}{2} m(K^{2}) \frac{v^{2}}{R^{2}}$

$=\frac{1}{2} m v^{2}(1+\frac{K^{2}}{R^{2}})$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ