Thermal Properties Of Matter Ques 26

26. Which of the following circular rods (given radius $r$ and length $l$ ), each made of the same material and whose ends are maintained at the same temperature will conduct most heat?

[2005]

(a) $r=r_0 ; l=l_0$

(b) $r=2 r_0 ; l=l_0$

(c) $r=r_0 ; l=2 l_0$

(d) $r=2 r_0 ; l=2 l_0$

Show Answer

Answer:

Correct Answer: 26.(b)

Solution:

  1. (b) From given option

(i) $r=2 r_0, l=2 l_0$

$ \therefore R=\frac{2 \ell_0}{K \pi(2 r_0)^{2}}=\frac{\ell_0}{2 K \pi r_0^{2}} $

(ii) $r=2 r_0, l=l_0$

$ \therefore R=\frac{\ell_0}{K \pi(2 r_0)^{2}}=\frac{\ell_0}{4 K \pi r_0^{2}} $

(iii) $r=r_0, l=2 l_0$

$ \therefore R=\frac{2 \ell_0}{K \pi r_0^{2}}=\frac{2 \ell_0}{K \pi r_0^{2}} $

(iv) $r=r_0, l=l_0$

$ \therefore R=\frac{\ell_0}{K \pi r_0^{2}}=\frac{\ell_0}{K \pi r_0^{2}} $

It is clear that for option (b) resistance is minimum, hence, heat flow will be maximum.

(i) Rate of heat flow is directly proportional to area

(ii) inversely proportional to length.

$\therefore$ Heat flow will be maximum when $r$ is maximum and $\ell$ is minimum.

We know that $Q=\frac{T_H-T_L}{R}$

Also, Thermal resistance $R=\frac{\ell}{K A}=\frac{\ell}{K \pi r^{2}}$

Heat flow will be maximum when thermal resistance is minimum.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ