Thermodynamics Ques 19

19. A mass of diatomic gas $(\gamma=1.4)$ at a pressure of $2$ atmospheres is compressed adiabatically so that its temperature rises from $27^{\circ} C$ to $927^{\circ} C$. The pressure of the gas in final state is

[2011 M]

(a) $28 $ $atm$

(b) $68.7 $ $atm$

(c) $256 $ $atm$

(d) $8 $ $atm$

Show Answer

Answer:

Correct Answer: 19.(c)

Solution:

  1. (c) $T_1=273+27=300 $ $K$

$T_2=273+927=1200 $ $K$

For adiabatic process,

$P^{1-\gamma} T^{\gamma}=$ constant

$\Rightarrow P_1{ }^{1-\gamma} T_1{ }^{\gamma}=P_2{ }^{1-\gamma} T_2{ }^{\gamma}$

$\Rightarrow(\frac{P_2}{P_1})^{1-\gamma}=(\frac{T_1}{T_2})^{\gamma} \Rightarrow(\frac{P_1}{T_2})^{1-\gamma}=(\frac{T_2}{T_1})^{\gamma}$

$\Rightarrow(\frac{P_1}{P_2})^{1-1.4}=(\frac{1200}{300})^{1.4} \Rightarrow(\frac{P_1}{P_2})^{-0.4}=(4)^{1.4}$

$ \begin{aligned} & \Rightarrow(\frac{P_2}{P_1})^{0.4}=4^{1.4} \\ & \Rightarrow P_2=P_1 4^{(\frac{1.4}{0.4})}=P_1 4^{(\frac{7}{2})} \\ & \Rightarrow P_1(2^{7})=2 \times 128=256 atm \end{aligned} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ