Thermodynamics Ques 25

25. If the ratio of specific heat of a gas at constant pressure to that at constant volume is $\gamma$, the change in internal energy of a mass of gas, when the volume changes from $V$ to $2 V$ at constant pressure $P$, is $\frac{3}{2}nR\Delta T$

[1998]

(a) $\frac{R}{(\gamma-1)}$

(b) $PV$

(c) $\frac{P V}{(\gamma-1)}$

(d) $\frac{\gamma P V}{(\gamma-1)}$

Show Answer

Answer:

Correct Answer: 25.(c)

Solution:

  1. (c) Change in internal energy is equal to the negative of work done in an adiabatic system

$\Delta W=-\Delta U$ (Expansion in the system)

$=-\frac{1}{\gamma-1}(P_1 V_1-P_2 V_2)$

$\Delta U=\frac{1}{\gamma-1}(P_2 V_2-P_1 V_1)$

Here, $V_1=V, V_2=2 V$

$\therefore \quad \Delta U=\frac{1}{\gamma-1}[P \times 2 V-P V]=\frac{P V}{\gamma-1}$

$\Rightarrow \Delta U=\frac{P V}{\gamma-1}$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ