Wave Optics Ques 7

7. The intensity at the maximum in a Young’s double slit experiment is $I_0$. Distance between two slits is $d=5 \lambda$, where $\lambda$ is the wavelength of light used in the experiment. What will be the intensity in front of one of the slits on the screen placed at a distance $D=10 d$ ?

[2016]

(a) $I_0$

(b) $\frac{I_0}{4}$

(c) $\frac{3}{4} I_0$

(d) $\frac{I_0}{2}$

Show Answer

Answer:

Correct Answer: 7.(d)

Solution:

  1. (d) Let $P$ is a point infront of one slit at which intensity is to be calculated. From figure,

Path difference $=S_2 P-S_1 P$

$=\sqrt{D^{2}+d^{2}}-D=D(1+\frac{1}{2} \frac{d^{2}}{D^{2}})-D$

$=D[1+\frac{d^{2}}{2 D^{2}}-1]=\frac{d^{2}}{2 D}$

$\Delta x=\frac{d^{2}}{2 \times 10 d}=\frac{d}{20}=\frac{5 \lambda}{20}=\frac{\lambda}{4}$

Phase difference,

$ \Delta \phi=\frac{2 \pi}{\lambda} \times \frac{\lambda}{4}=\frac{\pi}{2} $

So, resultant intensity at the desired point ’ $p$ ’ is $I=I_0 \cos ^{2} \frac{\phi}{2}=I_0 \cos ^{2} \frac{\pi}{4}=\frac{I_0}{2}$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ