Wave Optics Ques 9

9. Two slits in Young’s experiment have widths in the ratio $1: 25$. The ratio of intensity at the maxima and minima in the interference pattern, $\frac{I _{\max }}{I _{\min }}$ is:

[2015 RS]

(a) $\frac{121}{49}$

(b) $\frac{49}{121}$

(c) $\frac{4}{9}$

(d) $\frac{9}{4}$

Show Answer

Answer:

Correct Answer: 9.(d)

Solution:

  1. (d) The ratio of slits width $=\frac{1}{25}$ (given)

$\therefore \frac{I_1}{I_2}=\frac{25}{1}$

$I \propto A^{2} \Rightarrow \frac{I_1}{I_2}=\frac{A_1^{2}}{A_2^{2}}=\frac{25}{1}$ or $\frac{A_1}{A_2}=\frac{5}{1}$

As we know that,

$\frac{A _{\max }}{A _{\min }}=\frac{A_1+A_2}{A_1-A_2}=\frac{5+1}{5-1}=\frac{6}{4}=\frac{3}{2}$

$\therefore \frac{I _{\max }}{I _{\min }}=\frac{A _{\max }^{2}}{A _{\min }^{2}}=(\frac{3}{2})^{2}=\frac{9}{4}$

In YDSE, the radio of $\frac{I _{\max }}{I _{\min }}$ is maximum when both the sources have same intensity.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ