Waves Ques 56

56. Each of the two strings of length $51.6 cm$ and $49.1 cm$ are tensioned separately by $20 N$ force. Mass per unit length of both the strings is same and equal to $1 g / m$. When both the strings vibrate simultaneously the number of beats is

[2009]

(a) 7

(b) 8

(c) 3

(d) 5

Show Answer

Answer:

Correct Answer: 56.(a)

Solution:

  1. (a) The frequency of vibration of a string is given by, $f=\frac{1}{21} \sqrt{\frac{T}{m}}$ where $m$ is mass per unit length.

$f_1=\frac{1}{2 l_1} \sqrt{\frac{T}{m}}, f_2=\frac{1}{2 l_2} \sqrt{\frac{T}{m}}$,

$f_2-f_1=\frac{1}{2} \sqrt{\frac{T}{m}} \frac{(l_1-l_2)}{l_1 l_2}$

$\sqrt{\frac{T}{m}}=\sqrt{\frac{20}{10^{-3}}}=\sqrt{2} \times 10^{2}=1.414 \times 100$

$=141.4$

$\frac{1_1-1_2}{1_1 l_2}=\frac{(51.6-49.1) \times 10^{2}}{51.6 \times 49.1}$

$=\frac{2.5 \times 10^{2}}{50 \times 50}=\frac{1}{10}$

$\therefore \quad f_2-f_1=\frac{1}{2} \times 141.4 \times \frac{1}{10}=7$ beats



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ