Waves Ques 79

79. A star, which is emitting radiation at a wavelength of $5000 $ $\AA$, is approaching the earth with a velocity of $1.50 \times 10^{6}$ $ m / s$. The change in wavelength of the radiation as received on the earth is

[1996]

(a) $0.25 $ $\AA$

(b) $2.5 $ $\AA$

(c) $25 $ $\AA$

(d) $250 $ $\AA$

Show Answer

Answer:

Correct Answer: 79.(c)

Solution:

  1. (c) Given : Wavelength $(\lambda)=5000$ $ \AA$ velocity of star $(v)=1.5 \times 10^{6}$ $ m / s$.

We know that wavelength of the approaching $star(\lambda^{\prime})=\lambda(\frac{c-v}{c})$

or, $\frac{\lambda^{\prime}}{\lambda}=\frac{c-v}{c}=1-\frac{v}{c}$

or, $\frac{v}{c}=1-\frac{\lambda^{\prime}}{\lambda}=\frac{\lambda-\lambda^{\prime}}{\lambda}=\frac{\Delta \lambda}{\lambda}$

Therefore, $\Delta \lambda=\lambda \times \frac{v}{c}=5000 \times \frac{1.5 \times 10^{6}}{3 \times 10^{8}}=25$ $ \AA$

[where $\Delta \lambda=$ Change in the wavelength]



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ